Mechanics of Solids

Thermoelastic Relations in Isotropic Elasticity
and applications to axisymmetric problems

From the book: Mechanics of Continuous Media: an Introduction
1. J Botsis and M Deville, PPUR 2018
2. J Botsis, Class notes given during the course



Mechanics of Solids: Temperature changes

THERMAL STRESSES & STRAINS
We have for the strains from energetic considerations (three dimensional case):
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Setting (AT =T —17) the above relations are written explicitly:
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Mechanics of Solids: Temperature changes

THERMAL STRESSES & STRAINS
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In plane stress we have with (AT =7 —T)
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Mechanics of Solids: Temperature changes

THERMAL STRAIN & STRESSES
Plane Strain
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!

€ =

€y =

1+v

E

1+v

E

(1-v)o,, — v022)+0cEAT]

(1-v)o,, — van)+aEAT]

The stress components are obtained by inverting
the above relations



Mechanics of Solids: Temperature changes

BIHARMONIC EQUATION (PLANE STRESS)

Compatibility in terms of stresses

Introduce the strains o>
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Mechanics of Solids: Mechanics of Solids: Temperature changes

BIHARMONIC EQUATION WITH TEMPERATURE

BIHARMONIC EQUATION IN CYLINDRICAL COORDINATES

(only r dependence)

VD +aEV(AT)=0 |

Valid for plane stress or plane strain

problems if the body forces are neglected.
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Mechanics of Solids: Temperature changes-cylindrical coordinates

N Recall the equations

STRESS-STRAIN RELATIONS (PLANE STRESS)

(we need only replace X,,X,,x; > 7,0,z
in the corresponding relations on Cartesian
coordinates)
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Mechanics of Solids: Temperature changes

Thermal Stresses: Long Cylinder

with fixed ends (plane strain)
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STRESS-STRAIN RELATIONS (PLANE STRAIN)

(we need only repl

X, Xy, Xy > 7,0,2

ace

in the corresponding relations on Cartesian

Coordinates)

Introduce O_

g = l(arr — V0, — VO _ ) +aAT
Egp = i(a% —Vo_ —Vo,, ) +aAT
E
1
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into the deformation

expressions to obtain
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Mechanics of Solids: Theory of Elasticity; Egs in cylindrical coordinates

Cvlinder with free ends (plane stress)

RECALL OF THE SOLUTION METHOD

A
Iy

or

The problem is reduced to
one equation with one unknown

Recall the equations

E
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Mechanics of Solids: Temperature changes

THERMAL STRESSES IN DISKS
(STATE OF PLANE STRESS)

Stress-strain relations
EXAMPLES
. 1
ANNULAR FINS e = —(Urr —v099)+aAT;
* TURBINE DISKS E
The Temperature varies radially 7'(r 1
P Y ( ) Epp = E(a% —Vo,, ) +aAT

Invert them to obtain
strain-stress relations
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Mechanics of Solids: Temperature changes

THERMAL STRESSES IN DISKS
(STATE OF PLANE STRESS)
EXAMPLES

* ANNULAR FINS

*  TURBINE DISKS

The Temperature varies radially 7'(7)

COMBINE THE STRAIN-DISPLACEMENTS
WITH THE STRAIN-STRESS

INTRODUCE THE RESULTING EXPRESSIONS IN
EQUILIBRIUM EQUATION

do. 0,_—0p

c _dur - £ _ur
rr dl" 5 00 .
E EaAT
O-rrzl_vz (8rr+vg99)_ v ”
E EaAT
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rr + rr — O
X dr v
TO OBTAIN:
2
d I/;r +ldur _u; _ 1+ dT(r)
dr rdr r dr

(EQUILIBRIUM IN TERMS OF RADIAL DISPLACEMENT)
(one equation with one unknown)
(THE TEMPERATURE FIELD IS GIVEN)




Mechanics of Solids: Temperature changes

THERMAL STRESSES IN DISKS

EXAMPLES
* ANNULAR FINS
SOLVE THE ORDINARY DIFFERENTIAL EQUATION

*  TURBINE Disks OBTAINED EARLIER
The Temperature varies radially 7'(7) 5

du  ldu. u, dT (r)

-+ — -—={+v)a
dr rdr r dr

Is REWRITTEN AS l

di[l d(m”)}:(l+v)a dT (r)

, rodr dr
Particular
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? INTEGRATE TWICE TO OBTAIN THE SOLUTION
~~~~~~~~~~~~~~~~~~~ ‘ Rt i
(1 4 V)Ol ; Homogeneous solution
U, =- jT(r)rdr%cr+
- 7}




Mechanics of Solids: Temperature changes

THERMAL STRESSES IN DISKS

ANNULAR DISKS
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Mechanics of Solids: Temperature changes

THERMAL STRESSES IN DISKS SoLID DISKS
Ea | E c,(1-v)
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Mechanics of Solids: Temperature changes

Thermal Stresses: Long Cylinder

with fixed ends (plane strain)
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STRESS-STRAIN RELATIONS (PLANE STRAIN)

(we need only repl

X, Xy, Xy > 7,0,2

ace

in the corresponding relations on Cartesian

Coordinates)

Introduce O_

g = l(arr — V0, — VO _ ) +aAT
Egp = i(a% —Vo_ —Vo,, ) +aAT
E
1
g, = E(O'ZZ — Vo, —V0,, ) +aAT

into the deformation

expressions to obtain
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Mechanics of Solids: Theory of Elasticity; Egs in cylindrical coordinates

Thermal Stresses: Long Cylinder

with fixed ends (plane strain)

Equation of Equilibrium

do_rr + O-rr B 0-490 — O
dr r

Stain-Displacement Relations

du, u
= ° E
rr dl" 5 00

&

Compatibility Relation

d(r&gy) e =0
dr "

de
= p—

+€6’9_8rr :0

The problem can be solved by introducing a stress function:

Define the stress function ¢ such that:

rr

_o), _d(r)

) 00 =
7 dr

The equations of equilibrium are satisfied with these stresses.
Introduce these stresses in the stress-strain relations

&

o e

Eop =

1+v[(l v)o,, —Vvo,, +aEAT |

1+v[(1 V)o,, —VOo, +0cEAT]

And the resulting strains in the compatibility equation
with AT — T'(r)

d {_
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Mechanics of Solids: Theory of Elasticity; Egs in cylindrical coordinates

Thermal Stresses Long Cylinder
with fixed ends (plane strain)

Integrate the equation

d [l d(r¢)} _ 2aFE dT'(r)
dr

rodr l-v dr
aFE 17 CV C
=——— | T(r)rdr + 2
¢ 1—v r'[ ) 2 r
Use the result o o(r) o do(r)
to obtain stresses " T Yoo T

SOLID CYLINDER:
Boundary conditions
1. C, =0 for finite stresses at the origin

2. zerostressesat o0, | =0
r=r,
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Mechanics of Solids: Theory of Elasticity; Egs in cylindrical coordinates

Thermal Stresses Long Cylinder
with fixed ends (plane strain)

Integrate the equation

d Fd(m)}__
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Use the result ¢ d¢

to obtain stresses %, =5  Ogp = s

HoLLow CYLINDER:
Boundary conditions

zero stresses at o,
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Mechanics of Solids: Theory of Elasticity-Egs in spherical coordinates

THERMAL STRESSES IN SPHERES
Stress Components

Opp =04pp> Opp

Only one equation of equilibrium

B o, o0 RR 2
OR R & T

Strain-displacement relations:
o)
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Err = OR ;




Mechanics of Solids: Theory of Elasticity-Egs in spherical coordinates

THERMAL STRESSES IN SPHERES

Stress-Strain Relations
E
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Replace the strains with
uR

0
Epp = uR; Epy =&
RR aR 00 Q@ R

Introduce the results in equilibrium eq.

_L+v  dT(R)

d[1 d
a’R[RZ dR(RzuR)}l—v dR

One equation with one unknown




Mechanics of Solids: Theory of Elasticity-Eqgs in spherical coordinates

THERMAL STRESSES IN SPHERES

d |: 1 d (RzuR):|:1+VadT(R)

Xy

dR| R* dR 1-v  dR
Solution of this equation is
I+v a C,
u T(R)R* dR+C R+—
Ry sz (®) R’

In a solid sphere r =0
In a hollow sphere 7 is the internal radius

l




Mechanics of Solids: Theory of Elasticity-Egs in spherical coordinates

THERMAL STRESSES IN SPHERES

With the solution for the displacement

1+v o
1—v R?

U, = jT(R)R dR+CR+C

RZ

we calculate the strains

ERR:&MR; Egp =& :u_R aRR:—zﬂL IT(R)R dR |+C ——— E _c, 2F 3
OR PP R 1-v R '1-2y (1+v)R
I
From the stress-strain relation, o, = fEa 1 DT(R)R dR}rC E Cor 2F 3 _EolcT(R)
we calculate the stresses v R “(1+v)R —v




Mechanics of Solids: Theory of Elasticity-Egs in spherical coordinates

THERMAL STRESSES IN SPHERES
Solid Sphere

Boundary Conditions
2F0 1 E 2FE
Ope =————= TRRdR+C ini ioj _
RR 1—v R D (R) jl 17 2v (1+v)R3 1. The stresses must be finite at the origin— C2 =(

2Ea 1 X E E EaT(R) 2. Free external surface O'RR‘ =0
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: 1
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2Ea
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Y1y
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Mechanics of Solids: Theory of Elasticity-Egs in spherical coordinates

THERMAL STRESSES IN SPHERES

Hollow Sphere

O-RR

Opp =

1 Vv R

2Ea 1

1 V R

_2Ee 1 DT(R)R dR}C 1 E2
N

IZIT(R)R dR}rClE

2F

(1+V)R3

2F

_ EoT(R)

Boundary Conditions
Two conditions

o ‘ =0 ‘ =0
RRRzrl- RRRzre

(1+V)R3

Gl

EC,

[-2v

2Ea 1

lvr

_2BG, 1,

l+v 7’

l

jT(R)R IR+ EC,  2EC, 1320
1-2v  1+v r

Solve the system for the two constants



Mechanics of Solids: Theory of Elasticity-Egs in spherical coordinates

THERMAL STRESSES IN SPHERES

Hollow Sphere

2Ea 1 ) E 2F
O = T(R)R’dR |+C,——-C
- va“D () } "1-2v T (1+v) R
2F0 1 2E EaT(R)

E
{[T(R)R dR}FCI 2v +G, (1+v)R3 l-v

4

o
o0~ 1- vR3

2Ea| R’ -7’
0RR:1—V|:(7”3 R _[T(R)R dR——jT(R)R dR}
__2Ea| 2R+ T(R)
Y -y 2(r; r)R3 2




Mechanics of Solids: Theory of Elasticity-Egs in spherical coordinates

THERMAL STRESSES IN CYLINDERS AND SPHERES

When the temperature at the inner and outer surfaces are given we need to solve the
Fourier’s Law for heat conduction in order to obtain the temperature distribution as a function of the
radial coordinate.

This temperature distribution is inserted into the corresponding equations to obtain the resulting
thermal stresses.
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